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Abstract

trans-Silylation of silatranes by Si-substituted trimethoxysilanes has been found to be a reversible reaction,
the equilibrium of which is shifted towards the formation of the silatrane bearing a stronger (shorter)
transannular N!Si bond. A related reaction of 1,2-dimethyl-2-azasilatran-3-one with Si-substituted tri-
methoxysilanes leads to products in good yields only when phenyltrimethoxysilane is used. # 2000 Elsevier
Science Ltd. All rights reserved.
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The transannular N!Si bonding and the cage structure determine a number of features of
chemical and physical properties of silatranes including methods for their preparation.1ÿ3 The
gain in energy due to the formation of the intramolecular N!Si bond a�ords a high yield of
monomeric silatranes instead of polymeric products in the classical route to these compounds, i.e.
reactions of trifunctional silanes with tris-(2-hydroxyalkyl)amines or their derivatives. A ®ne
balance between the energy of transannular and conjugative interactions in the reactants and
products results in a high yield of 1-hydro- and 1-organylsilatranes in reactions of boratrane with
triethoxysilane,4 organyltriethoxysilanes5 and even some tetraorganylsilanes.5 Similarly, treatment
of 2,8,9-triazaalumatrane with methyltriethoxysilane leads to 1-methyl-2,8,9-triazasilatrane.6

These data stimulated our interest in the previously unknown trans-silylation of silatranes and
their poorly studied analogs, 2-azasilatran-3-ones,7 by Si-substituted trialkoxysilanes.
We found that trans-silylation of silatranes by trialkoxysilanes is generally a reversible and

highly chemoselective process. Thus, forward reactions (i) between 1-methylsilatrane 1a and Si-
substituted trimethoxysilanes 2b±g lead to nearly the same resultant equilibrium mixtures as those
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produced in the reverse reactions (ii) between silatranes 1b±g bearing the corresponding
substituent X and methyltrimethoxysilane 2a (Scheme 1). Under MeONa catalysis, these
reactions, occurring at 150�C in dry CDCl3 in sealed ampoules, reach equilibrium within 1.5 h,
by-product formation being negligible.8 The 1b±g:1a ratio in equilibrium mixtures was found to
be dependent on the nature of the Si-substituent and, hence, on the strength of the transannular
Si N bonding in both reacting and forming silatranes.

Table 1 displays the Si N bond lengths (dSiN) of silatranes 1b±g in CDCl3
y and the results of

reacting silatranes 1a±g with trimethoxysilanes 2a±g.10 The data obtained demonstrate a regular
trend towards a shift of equilibrium of the trans-silylation reactions (i) and (ii) towards the
formation of the silatrane with the shorter transannular N!Si bond (for 1a, dSiN=2.24 AÊ ).

Similar results were obtained when these reactions were performed without solvent and when
trimethoxysilanes 2a±g were replaced by the corresponding triethoxysilanes. In the absence of the
catalyst, trans-silylation proceeds more slowly.
The e�cient trans-silylation of 1-methylsilatrane by trialkoxysilanes having a more electro-

negative substituent X than a methyl group is of interest. This reaction not only demonstrates the

Scheme 1. X=ClCH2 (b), Cl2CH (c), vinyl (d), Ph (e), MeO (f), Cl (g)

Table 1
The Si!N bond lengths of silatranes 1b±g in CDCl3 and their relative

content (1b±g:1a) in equilibrium mixtures as well as isolated yields in
reactions (i)

y The dSiN values for silatranes in CDCl3 solutions were estimated from their 15N NMR chemical shifts, �, using the
previously established9 linear correlation: dSiN=^4.30±1.82�10^2 �. The latter is based on the corresponding solid-state
and gas-phase data and is interpolated on the solutes.
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key role of the N!Si bond in the formation of silatranes, it also opens a new route to these
compounds which are inclined to undergo a Si±X bond cleavage under routine synthetic
procedures.2,3

trans-Silylation of 1,2-dimethyl-2-azasilatran-3-one 3a by trimethoxysilanes 2b±g under similar
conditions appears to be a less chemoselective process. According to NMR, reactions of aza-
silatranone 3a with most of the trimethoxysilanes are plagued by a number of side-reactions to
give complex mixtures of by-products with non-cage structures together with just a small amount
of the target compounds. Only the use of phenyltrimethoxysilane 2e resulted in a good (60%)
yield and moderate (38%) isolated yield of the expected azasilatranone 3e (Scheme 2).11 These
results probably re¯ect a weaker transannular N!Si bonding in azasilatranones than in related
silatranes and the high sensitivity of their amido Si±N bond to both electrophile and nucleophile
attack.
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from the reaction mixtures under a high vacuum at 80�C and recrystallization of the solid residue using
appropriate solvents. Melting points of the isolated compounds agree with those found previously.1,2

11. Synthesis of 1-phenyl-2-methyl-2-azasilatran-3-one 3e: Phenyltrimethoxysilane (4.32 g, 0.02 mol) was added to a
solution of azasilatranone 3a (3.96 g, 0.02 mol) in 25 mL of dry CDCl3. The reaction mixture was kept for 2 h in
sealed ampoule at 100�C (oil bath). The resultant solution was analyzed by NMR spectroscopy. It was then

concentrated under vacuum and the solid residue was recrystallized three times from a mixture of benzene:Et2O
(3:1) to give 3e (2.11 g, 38%) as a cream-colored, sensitive to moisture, powder. Compound 3e: m.p. 238±239�C;
�H (400.1 MHz, CDCl3) 2.41 (s, 3H), 2.91 (dt, 2J=12.0 Hz, 3J=5.9 Hz, 2H), 3.08 (dt, 2J=12.0 Hz, 3J=5.9 Hz,
2H), 3.49 (s, 2H), 3.96 (t, 3J=5.9 Hz, 4H), 7.26 (m, 3H), 7.70 (m, 2H); �c (100.6 MHz, CDCl3) 32.1, 53.1, 55.9,

57.6, 127.4, 128.2, 135.0, 141.9, 172.5; �Si (79.5 MHz, CDCl3) ^79.0. Found: C, 55.78; H, 6.13; N, 10.23; Si, 9.57.
C13H18N2O3Si requires: C, 56.09; H, 6.52; N, 10.06; Si, 10.09.
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